初三数学教学工作计划范文汇总5篇
时光飞逝,时间在慢慢推演,我们的工作又将在忙碌中充实着,在喜悦中收获着,该为接下来的学习制定一个计划了。什么样的计划才是好的计划呢?下面是小编精心整理的初三数学教学工作计划5篇,欢迎大家借鉴与参考,希望对大家有所帮助。
初三数学教学工作计划 篇1一、内容和内容解析
(一)内容
一元二次方程的概念,一元二次方程的一般形式.
(二)内容解析
一元二次方程是方程在一元一次方程基础上 “次”的推广,同时它是解决诸多实际问题的需要,为勾股定理、相似等知识提供运算工具,是二次函数的基础.
针对一系列实际问题,建立方程,引导学生观察这些方程的共同特点,从而归纳得出一元二次方程的概念及一般形式.在这个过程中,通过归纳具体方程的共同特点,得出一元二次方程的概念,体现了研究代数学问题的一般方法;一般形式ax2+bx+c=0也是对具体方程从“元”(未知数的个数)、“次数”和“项数”等角度进行归纳的结果;a≠0的条件是确保满足 “二次”的要求,从另一个侧面为理解一元二次方程的概念提供了契机.
二、目标和目标解析
(一)教学目标
1.体会一元二次方程是刻画实际问题的重要数学模型,初步理解一元二次方程的概念;
2.了解一元二次方程的一般形式,会将一元二次方程化成一般形式.
(二)目标解析
1.通过建立一元方程解决相关的实际问题,让学生体会到未知数相乘导致方程的次数升高,继而产生一元二次方程.学生能举例说明一元二次方程存在的实际背景,感受一元二次方程是重要的数学模型,体会到学习的必要性;
2.将不同形式的一元二次方程统一为一般形式,学生从数学符号的角度,体会概括出数学模型的简洁和必要,针对“二次”规定a≠0的条件,完善一元二次方程的概念.学生能够将一元二次方程整理成一般形式,准确的说出方程的各项系数,并能确定简单的字母系数方程为一元二次方程的条件.
三、教学问题诊断分析
一元二次方程是学生学习的第四个方程知识,首先在初一学习了一元一次方程,接着扩展“元”得到二元一次、三元一次方程,完成了二元一次方程组的学习,初二分式的教学,使得对实际问题的刻画从整式推广到有理式,分式方程得以出现,到一元二次方程第一次实现 “次”的提升.学生必然存在着疑问,为什么有些背景列得的方程是二次的呢?教学中要直面学生的疑问,显化学生的疑问,启发学生自己解释疑问,才能避免“灌输”,体现知识存在的必要性,增强学好的信念.
培养建模思想,进一步提升数学符号语言的应用能力, 让学生自己概括出一元二次方程的概念,得出一般形式,对初三学生是必须的,也是适可的.
本课的教学重点应该放在形成一元二次方程概念的过程上,不能草草给出方程的概念就反复辨析练习,在概念的理解上要下功夫.
本课的教学难点是一元二次方程的概念.
四、教学过程设计
(一)创设情境,引入新知
教师展示教科书本章的章前图,请同学们阅读章前问题,并回答:
问题1.这个方程属于我们学过的某一类方程吗?
师生活动:学生整理已经学过的方程类型,复习方程的概念,元与次的概念,观察新方程,分析此方程的元与次,尝试为新方程命名.
【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理的构建一元二次方程这一新知识.
问题2.这样的方程在其他实际问题中是否还存在呢?你能再想出一个例子吗?
师生活动:学生思考二次项产生的原因,从熟悉的实际背景中,很有可能从矩形的面积出发,设计情境.
【设计意图】让学生从“接受式”的学习方式中走出来,走向对一元二次方程产生的根源的探求,在编制情境的过程中,他们将加深对一元二次方程概念的理解.部分学生能够独立解决问题,自己编制情境并列出方程,部分学生可以根据同学给出的情境去列方程,或者阅读课本上的实际问题.
(二)拓宽情境,概括概念
给出课本问题1、问题2的两个实际问题,设未知数,建立方程.
问题1 如图21.1-1,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?
个队参赛,则每个队要与其他____个队各赛一场,全部比赛共有___ 场.
由此,我们可以列出方程______________,化简得________________.
问题3. 这些方程是几元几次方程?
师生活动:学生将实际问题中的语言转化成数学的符号语言,体会运算关系,寻找等量关系,学习建模.将列得的方程化简整理,判断出方程的次数.
【设计意图】在建模的过程中不仅加强学生的数学思维能力,而且对二次项产生的根源将更加明晰,加深对一元二次方程的理解.让学生回答方程的元与次,一是让他们体会统一成一般形式的必要性,为概念的形成做铺垫,分解教学的难点;二是让他们明确教学的主线,从被动学习走向主动学习.
问题4.这些方程是什么方程?
师生活动:观察本课得出的一些方程,思考它们的共性,同学们尝试给出一元二次方程的定义,并且概括出一元二次方程的一般形式.
1.一元二次方程的概念:
等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2(二次)的方程叫做一元二次方程.
2.一元二次方程的一般形式是
是二次项,a是二次项系数;
开发学生认识的资源,激发学生从不同角度、不同形式去深入理解同一概念,让不同的学生在此过程中获得不同的收获,实现分层教学分层指导的效果.
问题6. 下列方程哪些是一元二次方程?
例1.下列方程哪些是一元二次方程?
(1)
;
(3)
;
(5)
.
答案(2)(5)(6).
师生活动:用概念指导辨析,方程(3)与(4)同学们可能会产生争议,(3)帮助学生明确一元二次方程是整式方程,(4)体会化为一般形式的必要性,对a≠0条件加深认识.
【设计意图】补足学生所举正反例的缺漏,追问:有二次项的一元方程就是一元二次方程吗?帮助学生进一步巩固概念,深化对一元、二次的认识.
问题7.指出下列方程的二次项、一次项和常数项及它们的系数.
例2. 将下列方程化为一般形式,并分别 ……此处隐藏1580个字……学法指导
要从只重视学生的智力因素转移到重视智力因素与非智力因素协调发展上来,特别应突出对学生学习兴趣与动力激发、学习习惯与品质养成、理想教育与成功教育等方面的研究和强化。要系统有序地教给学生本学科的学习方法,并注意跟上个别指导。
6、因材施教,加强学生的分层次教育。
切实贯彻“优生优培,中间生提高,困难生稳中求进”的原则。要增强优生优培意识,调整优生优培策略,要特别关注第一名,将其作为重点中的重点悉心培养。在课堂提问、试卷批阅等环节要注意对中程生倾斜,使其尽快优化,以提高平均分,增加其升入高中的机会。对学习困难生,更要多一份耐心,要想方设法鼓舞其信心,利用复习的机会掌握一些基本知识,提高平均分,顺利完成学业,以此提升平均分。
教学计划安排:
第一~二周 新授: 圆,统计与概率初步。
第三周 基础知识复习数与式。
第四周 方程与不等式。
第五~六周 函数。
第七~八周 图形的初步认识与三角形、四边形。
第九周 圆。
第十周 图形与变换、统计与概率。
第十一周 知识的拓展复习。
第十二周 针对专题复习(数学思想方法专题、规律与猜想专题、阅读理解专题、决策与应用专题、操作探究专题、探索与证明专题、图形与运动专题)
第十三周~中考 回扣教材,针对不同的学生存在的问题查漏补缺,回归基础知识复习,强化基础知识应用
初三数学教学工作计划 篇4我有以下设想,主要是问题的解决。
那么,现在存在的问题是许多学生面对急于求成,造成学习上的方法不当,出现无形的学习压力,造成各方面的损失。对于这些问题的解决我想从以下几方面来做:
1.在教学中积极引导学生,对学生进行思维能力的培养,提高学习效率。
2.在课堂中涉入与有关的试题知识,作业也渗透一些知识。
3. 在训练巩固方面,对作业的要求是做到每天必练,当天问题及时解决。
4.组织学生进行一次数学知识系统分析会。
5.中考结束后进行一次学生个人搜集一套中考性试题。
6.中考总复习后进行一次分组提问会,学生提出自己备考中的问题,师生交流解决。
总之,为中考做好备战工作,及时发现问题及时解决、归纳全力以赴完成中考复习工作,让全体学生有一个满意的中考成绩!
初三数学教学工作计划 篇5一、基本情况:
本学期是初中学习的关键时期,本学期我担任初三年级三(5、6)两个班的数学教学工作,是新课程标准实验教材,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中的创新意识、引导学生进行思考问题方式都必须不同与以往的教学。因此,在完成教学任务的同时,必须尽可能性的创设情景,让学生经历探索、猜想、发现的过程。并结合教学内容和学生实际,把握好重点、难点。树立素质教育观念,以培养全面发展的高素质人才为目标,面向全体学生,使学生在德、智、体、美、劳等诸方面都得到发展。为做好本学期的教育教学工作,特制定本计划。
二、指导思想:
初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。
三、教学内容:
本学期所教初三数学包括第一章证明(二),第二章一元二次方程,第三章证明(三),第四章视图与投影,第五章反比例函数,第六章频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数这两章是与数及数的运用有关的。频率与概率则是与统计有关。
四、教学目的:
在新课方面通过讲授《证明(二)》和《证明(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。
在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。
五、教学重点、难点
本册教材包括几几何何部分《证明(二)》,《证明(三)》,《视图与投影》。代数部分《一元二次方程》,《反比例函数》。以及与统计有关的《频率与概率》。
《证明(二)》,《证明(三)》的重点是1、要求学生掌握证明的基本要求和方法,学会推理论证;2、探索证明的思路和方法,提倡证明的多样性。难点是1、引导学生探索、猜测、证明,体会证明的必要性;2、在教学中渗透如归纳、类比、转化等数学思想。
《视图与投影》和重点是通过学习和实践活动判断简单物体的三种视图,并能根据三种图形描述基本几何体或实物原型,实现简单物体与其视图之间的相互转化。难点是理解平行投影与中心投影,明确视点、视线和盲区的内容。
《一元二次方程》,《反比例函数》的重点是1、掌握一元二次方程的多种解法;2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的性质。难占是1、会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。
《频率与概率》的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。
六、教学措施:
针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:
1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。
2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。
3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。
4、新课教学中涉及到旧知识时,对其作相应的复习回顾。
5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。